Metamenu

  • University of Vienna
  • Research network CMM
  • Dept of Microbiology and Ecosystem Science
  • CUBE
  • VOGDB
  • SIMAP
  • Gepard
  • GenSkew
  • ConsPred
  • PICA
effectors.org, University of Vienna

Search form

Navigation

  • Home
  • News
  • Browse
  • Job submission
  • Help
  • Methods
  • Download
  • Publications
  • Links

Genomes encoding eukaryotic-like proteins

  • CSV
  • XLS
  • XML

PF04983 RNA polymerase Rpb1, domain 3

Copy number in non-pathogens:
Mean=1.00 Stddev=0.22

Genomes significantly enriched in this eukaryotic-like domain (ELD; score >= 4):

Genome Class* ELD score Number of proteins containing this domain
Microcystis aeruginosa NIES-843 s 4 2
Campylobacter jejuni s 4 2
Klebsiella pneumoniae s 4 2
Staphylococcus aureus subsp. aureus s 8 3
Candidatus Synechococcus spongiarum s 4 2
Bifidobacterium longum s 4 2
Neisseria lactamica ATCC 23970 s 4 2
Rivularia sp. PCC 7116 s 4 2
Geitlerinema sp. PCC 7105 s 4 2
Leptolyngbya boryana PCC 6306 s 4 2
Calothrix sp. PCC 7103 s 4 2
Calothrix sp. PCC 6303 s 4 2
Pleurocapsa sp. PCC 7319 s 4 2
Synechococcus sp. PCC 7335 s 4 2
Staphylococcus aureus subsp. aureus IS-88 s 4 2
Mycobacterium tuberculosis TKK_04_0095 s 4 2
Nostoc punctiforme PCC 73102 s 4 2
'Nostoc azollae' 0708 s 4 2
Fibrobacter succinogenes subsp. succinogenes S85 s 4 2
Fibrobacter succinogenes subsp. succinogenes S85 s 4 2
Acaryochloris marina MBIC11017 s 4 2
Acinetobacter baumannii 44327_7 s 4 2
Vibrio fortis s 4 2
Butyrivibrio sp. AE2032 s 4 2
Tissierellia bacterium S5-A11 s 4 2
Myxosarcina sp. GI1 s 4 2
Bacillus cereus s 4 2
Escherichia coli s 4 2
Nostoc sp. KVJ20 s 4 2
[Haemophilus] parasuis p 4 2
Streptococcus mitis s 4 2
Bacillus cereus s 4 2

*p=pathogen;s=symbiont

Release announcements

News

  • EffectiveDB genome mode fixed

    24.11.20
  • EFFECTIVEELD 5.2: EUKARYOTIC-LIKE DOMAIN PREDICTION UPGRADED TO PFAM 31

    20.08.17
  • EffectiveELD 5.1: Eukaryotic-like domain prediction upgraded to Pfam 29

    24.06.16

Latest publications

  • EffectiveDB-updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems.
  • Prediction of microbial phenotypes based on comparative genomics.

Contact

  • +43 1 4277 76681
  • +43 1 4277 876681
  • contact.cube@univie.ac.at
Computational Systems Biology, University of Vienna
  • Contact
  • Imprint
  • Privacy Policy
University Vienna