Metamenu

  • University of Vienna
  • Research network CMM
  • Dept of Microbiology and Ecosystem Science
  • CUBE
  • VOGDB
  • SIMAP
  • Gepard
  • GenSkew
  • ConsPred
  • PICA
effectors.org, University of Vienna

Search form

Navigation

  • Home
  • News
  • Browse
  • Job submission
  • Help
  • Methods
  • Download
  • Publications
  • Links

Genomes encoding eukaryotic-like proteins

  • CSV
  • XLS
  • XML

PF03781 Sulfatase-modifying factor enzyme 1

Copy number in non-pathogens:
Mean=1.60 Stddev=2.26

Genomes significantly enriched in this eukaryotic-like domain (ELD; score >= 4):

Genome Class* ELD score Number of proteins containing this domain
Microcystis aeruginosa NIES-843 s 6 16
Chthoniobacter flavus Ellin428 s 6 17
Cellulophaga algicola DSM 14237 s 4 11
Treponema succinifaciens DSM 2489 s 4 12
Rivularia sp. PCC 7116 s 4 12
Didymococcus colitermitum TAV2 s 4 11
Calothrix sp. PCC 7103 s 4 11
Calothrix sp. PCC 6303 s 5 13
Opitutaceae bacterium TAV1 s 5 14
Treponema lecithinolyticum ATCC 700332 s 6 16
Treponema denticola AL-2 s 5 13
Treponema denticola ASLM s 5 13
Treponema denticola ATCC 33520 s 5 13
Treponema denticola ATCC 33521 s 5 15
Treponema denticola ATCC 35404 s 5 15
Treponema denticola H-22 s 4 12
Treponema denticola H1-T s 4 11
Treponema denticola MYR-T s 4 11
Treponema denticola OTK s 5 15
Treponema denticola SP37 s 7 18
Treponema denticola US-Trep s 5 13
Treponema denticola SP23 s 6 17
Treponema denticola SP44 s 6 17
Fibrobacter succinogenes subsp. succinogenes S85 s 8 20
Fibrobacter succinogenes subsp. succinogenes S85 s 8 20
Acaryochloris marina MBIC11017 s 8 21
Treponema porcinum s 4 11
Treponema denticola ATCC 35405 s 6 16

*p=pathogen;s=symbiont

Release announcements

News

  • EFFECTIVEELD 5.2: EUKARYOTIC-LIKE DOMAIN PREDICTION UPGRADED TO PFAM 31

    20.08.17
  • EffectiveELD 5.1: Eukaryotic-like domain prediction upgraded to Pfam 29

    24.06.16
  • New release 5.0 of Eukaryotic-like domains finished

    16.09.15
    F-Box domain

Latest publications

  • EffectiveDB-updates and novel features for a better annotation of bacterial secreted proteins and Type III, IV, VI secretion systems.
  • Prediction of microbial phenotypes based on comparative genomics.

Contact

  • +43 1 4277 76681
  • +43 1 4277 876681
  • contact.cube@univie.ac.at
Computational Systems Biology, University of Vienna
  • Contact
  • Imprint
  • Privacy Policy
University Vienna